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ABSTRACT
OpenData movement around the globe is demanding more
access to information which lies locked in public or private
servers. As recently reported by a McKinsey publication,
this data has significant economic value, yet its release has
potential to blatantly conflict with people privacy. Recent
UK government inquires have shown concern from various
parties about publication of anonymized databases, as there
is concrete possibility of user identification by means of link-
age attacks. Differential privacy stands out as a model that
provides strong formal guarantees about the anonymity of
the participants in a sanitized database. Only recent results
demonstrated its applicability on real-life datasets, though.
This paper covers such breakthrough discoveries, by review-
ing applications of differential privacy for non-interactive
publication of anonymized real-life datasets. Theory, util-
ity and a data-aware comparison are discussed on a variety
of principles and concrete applications.
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1. INTRODUCTION

1.1 Motivation
In a recent report by McKinsey [47] it is estimated that in

the developed economies of Europe alone, government ad-
ministration could save more than e100 billion ($149 billion)
in operational efficiency improvements alone by leveraging
big data. This term refers to the enormous quantity of infor-
mation organizations around the globe collect daily. In par-
ticular, public institutions retain data about many aspects of
our life, including medical, fiscal, transportation and crimi-
nal records. Private companies are also increasingly taking
a bigger role in our private life by recording our Internet
searches, friends network, financial transactions and trans-
portation habits. Not everybody knows how to handle this
information properly, though. UK, the leading European
country in terms of Open Data, recently held a consultation
[56] with public institutions and industry representatives to
discuss data publishing issues. Various parties expressed
a clear concern about privacy issues, prompted in part by
clamorous episodes of privacy breaches occurred in the past.
In 1997 the state of Massachusetts had to provide health in-
surance to its employees, but insurance companies wanted
some information about employees’ health status. It was
decided to provide such data with supposedly ’anonymized’
health records of the personnel. Obviously identifying in-
formation such as names and addresses were stripped, but
other fields such as ZIP code, birth date and sex were kept.
Unfortunately, these fields where also present in the vot-
ing records, which are public in the US. See Figure 1 for
a graphical representation of these two datasets. Latanya
Sweeney, then a computer science student, decided to prove
privacy was at risk by crossing the data and locating per-
sonal information of William Weld, the then Governor of
Massachusetts. She obtained a copy of the voting records of
his constituency, and discovered there was only one person
in the health records with the same ZIP, birthday and sex of

Figure 1: Crossing datasets in Sweeney case.



Figure 2: A generic counting query.

Figure 3: A sensitive query.

the governor. To prove her point, she then sent to Governor
Weld his own health records. In addition to this, Sweeney
also proved 87% of American citizens can be uniquely iden-
tified just by knowing their gender, ZIP code and birth date
[55]. The quest for true anonymization in the field of Privacy
Preserving Data Publishing (PPDP) began, and it is still
not over. In 2006 Internet provider AOL released its search
log containing 3 months of searches of 650,000 users. User-
names were masked with random identifiers, still, in a mat-
ter of days, a New York Times reporter identified Thelma
Arnold, a 62-year old widow from Lilburn, GA as user #
4417749 [3], and her queries became known to the world.
As a consequence of releasing this private dataset the CTO
of AOL resigned, two employees were fired and a class ac-
tion lawsuit is pending. Later the same year, Netflix, a DVD
rental company released a perturbed version of one tenth of
its database of movie ratings expressed by its customers.
A prize of 1,000,000$ was offered to whoever improved by
10% the accuracy of the company’s own recommandation al-
gorithm. The following year the researchers Narayanan and
Shmatikov proved it was possible to identify users by linking
them to Imdb, a public database of movie ratings in which
users voluntarily can publish their ratings [52]. This con-
cerns prevented in 2010 NetFlix from proposing a follow-up
of the prize.

1.2 Solutions

1.2.1 Interactive vs Non-Interactive
Analysts want to have precise answers to queries about

anonymized data, which can be sensitive. In the so-called in-
teractive setting, information is protected inside a database
handled by the data owner, and access to it is allowed only
through an interface. Answers provided by the interface are
processed in such a way to guarantee the anonymity of the
participants in the database. Let’s suppose analysts are only
allowed to ask counting queries. We can see in Figure 2 an
example of a query request by the analyst. In this case the

returned answer can be the true value in the database as
the interface deems the query to be generic enough not to
compromise privacy of individuals. On the other hand, in
Figure 3 we see a situation in which the asked query is much
more precise and sensitive. In this case the system could
completely deny an answer, but this appears to be quite a
drastic remedy. A more appealing solution could be to add
some random noise to the true count, maybe distributed ac-
cording to the Laplace distribution, in order to have most
often results near the true value. This way the analyst would
be provided with an idea of the original amount while still
having some uncertainty about it. Still, we could have a
problem. What if three different malicious analysts asked all
the same question to the interface? Each of them would re-
ceive a slightly differing answer because of the random noise
being added to the true count. In the worst case scenario,
they could exchange the values they got and calculate an
average. This operation in expectation would allow them
to deduce a value much closer to the true one and would
thus vanish the efforts of the anonymizing interface. In the
non-interactive setting this problem is addressed by releas-
ing once and for all the data which we think is of interest
to most analysts, while still preserving privacy. Naturally
the example we made is simplistic and with this paper we
intend to prove a wealth of useful information can be pub-
lished while formally maintaining strong privacy guarantees.

1.2.2 What is ‘personal information’?
Over the years, several solutions to solve the problem of

protecting privacy in anonymized databases have been pro-
posed. Examples are k-anonymity [55], l-diversity [46], t-
closeness [42]. All these methods suppose it is worth to
distinguish data attributes into these groups: identifiers (i.e.
name, surname), quasi-identifiers(i.e. ZIP code, gender, age)
and sensitive (i.e. diagnosis, rentedAdultMovie). In legal
terms, in the EU the Data Protection Directives [27] define
personal data as ‘information related to an identified or iden-
tifiable natural person’. It is a quite general definition, and
for example even a house value can be classified as personal
information as it might reveal its owner income. Recently,
the European Data Protection Supervisor EDPS expressed
its concerns [26] about a proposal on re-use of Public Sec-
tor Information (PSI) previously adopted by the European
Commission [25]. In particular it was recommended that

“Where appropriate, the data should be fully or
partially anonymised and license conditions should
specifically prohibit re-identification of individu-
als and re-use of personal data for purposes that
may individually affect the data subjects.”

The purpose limitation is a difficult issue to solve in a con-
text where PSI is put on the Internet for everybody to see.
European transgressors who try to identify persons whose
data is contained in a published anonymized dataset may
be fined, but how to deal with non-European ones? Also,
how is it possible to measure the degree of anonymization
of a given dataset in order to decide if it is too risky to
be published on the Internet? For example, the UK Office
for National Statistics is going to release data collected in
2011 anonymized with a record-swapping system [57], which
involves selecting households which are deemed too identi-
fiable and swapping them with other households which are
not too far in the same geographical region and have similar



Figure 4: Anonymized dataset under k-anonymity

Figure 5: Problem with anonymized dataset under
k-anonymity

values. Tables containing origin-destination data are con-
sidered too hard to anonymize in a satisfying way so they
are licensed only to restricted users. What are the theoret-
ical basis for this distinction, if any? The EDPS calls for a
‘proactive approach’ which should be taken by authorities,
meaning privacy issues should be analyzed at the earliest
stages and involved people informed throughout all the data
process release.

1.2.3 From k-anonymity to differential privacy
Linkage attacks shown before demonstrate how quasi-

identifiers can be used to significantly increase the accuracy
in identity disclosure, making the distinction with identifiers
purely artificial. In the already mentioned Sweeney case,
where Massachusetts Governor health data was revealed by
crossing public voting records and anonymized health data,
Latanya Sweeney proposed the so-called k-anonymity model
to prevent disclosure attacks. We will show an example of
anonymization through k-anonymity and why it may still
fail to work under certain circumstances. Let’s suppose we
release a medical records table like the one in Figure 4. In
this table quasi-identifiers have been generalized in such a
way to have at least k rows in the database with the same
quasi-identifiers. This would prevent an eventual attacker
to discover exactly which diagnosis the governor has among
the (at least) k available. Still, this model has a problem,
exemplified in Table ??.

What could happen if by chance all the people in Gov-
ernor’s group had HIV? We would conclude the Governor
himself is affected by this illness, and thus his privacy would
be compromised. Also, sometimes the sole fact of knowing
somebody is or is not in a database may provide a mali-
cious user with valuable information to carry out an attack.
So, how do we reach the so called privacy by design, when
a data release process is devised to prevent disclosure with
formal guarantees? To respond to these issues the concept
of differential privacy was introduced by Dwork [18] to pre-
vent attackers from being capable even to detect the pres-

Figure 6: A sensitive count probability for neigh-
boring databases.

ence or absence of a given person in a database. Differential
privacy falls in the category of so called perturbative meth-
ods, which attempts to create uncertainty in the released
data by adding some random noise. If database partici-
pants are independent from each other, differential privacy
promises that even if an attacker knows everything about
every user in the db but one, by looking at the published
statistics he won’t be able to determine the identity of the
remaining individual. Kieron O’Hara, in his 2011 indepen-
dent transparency and privacy review to UK government
[53] mentions differential privacy as a cutting-edge technol-
ogy that judges the computation of the anonymization al-
gorithm as privacy-preserving or otherwise, rather than try-
ing to make an impossible distinction between identifying
and non-identifying data. This might sound promising, but
O’Hara claims differential privacy appears to be limited to
the interactive setting. Is this really true? Recent results in
the non-interactive setting are encouraging. In what follows,
we formalize some concepts about differential privacy.

1.3 Basic definitions
We use P (A) to indicate the probability of the occurrence

of event A and define ‖x‖1 as the sum of all elements in
vector x.

Definition 1 (database). Given a database universe
D we define a database D ∈ D as multiset of |D| tuples
from a universe U of people. Each person has h attributes
A1, A2, ..., Ah. We say two databases D1, D2 are neighbors
if they differ in one tuple. We indicate such condition as
|D1∆D2| = 1, where D1∆D2 = (D1 ∪D2) \ (D1 ∩D2).

1.4 Differential privacy
Randomized algorithms to publish sensitive data are called

mechanisms. Since we are addressing the problem of statis-
tical disclosure at large, we use R to denote a wide range of
output possibilities for the mechanism designers, whose goal
is to devise a mechanism function D → R. One possible
choice of R could be D itself, meaning we are going either
to release a new database composed by synthetic individu-
als who hopefully follow the same distribution of the original
participants or we publish a perturbed version of the orig-
inal database, with real data randomly modified to satisfy
differential privacy criteria. An another possible and popu-
lar choice of R is the set of queries qj counting how many
individuals ui satisfy a given property γj (ui). A mechanism



Table 1: eε values
ε eε

0.01 1.01
0.1 1.10

ln 2 = 0.69 2
1 2.71

ln 3 = 1.10 3

in order to be ε-differentially private must satisfy the follow-
ing definition first introduced by Dwork [20], which in recent
years has become popular among researchers in the field of
statistical disclosure:

Definition 2 (ε-dp). Given a randomized mechanism
M : D → R and a real value ε > 0, we say M satisfies ε-
differential privacy if ∀D1, D2 ∈ D such that |D1∆D2| = 1
and ∀R ⊆ R the following equation holds:

P (M (D1) ∈ R) 6 eεP (M (D2) ∈ R)

Equivalently, as we can exchange the two databases D1

and D2 we can write the following equation:

e−εP (M (D2) ∈ R) 6 P (M (D1) ∈ R) 6 eεP (M (D2) ∈ R)

Differential privacy guarantees the following: a data re-
lease mechanism is ε-differentially private if, for any couple
of neighboring databases D1 and D2 differing in one person,
any participant u in the database, and any possible output
r of the release mechanism, the presence or absence of a
participant u (in db terms, D1 andD2 differing in one row)
causes at most a multiplicative eε change in the probability
of the mechanism outputting r.

1.4.1 Differential privacy for counting queries
Suppose we want to release the count of people with HIV

from a hypothetical medical database D. We must then
devise a mechanism L that when executed on databases dif-
fering in one person probably outputs the same count. Dif-
ferential privacy is a constraining model but it still allows
us to have good outputs close to the true count at a rate
exponentially greater than values far from it. For counting
queries, if a database D2 differs in one person from D1 then
there are three possibilities: the count can remain the same,
or differ from the original database count by +1 or −1. It
turns out that if we add to the true value noise distributed
according to the Laplace distribution differential privacy is
satisfied, and in Figure 6 we can see an example of it. We
included in the picture three times the same distribution,
one for the database D at hand centered around 1, the sup-
posedly true count, and two other distributions for possible
neighboring databases D′, (of course there are neighboring
databases with the same count as D). Differential privacy
constraints will guarantee that the distance between the dis-
tributions, evidenced by the vertical bold lines when it is at
its maximum, will never be too big. The only parameter of
differential privacy formula is ε, and it governs the amount
of noise we are going to add to the count. In Figure 7 two
possible values are shown. A big ε will induce less noise and
thus more precise results with peaked distributions. Such
result will please analysts because of the increased precision
but it will also make people worry about their privacy. On
the other hand, a small ε will generate less noise and thus
the probability distributions will be forced to be nearer to

Figure 7: Contribution of ε to the added noise.

each other, getting also larger as the graph shows. In this
case results will be more likely to be far from the true ones,
thus better protecting people privacy. In Table 1 we report
some frequently used values of ε and eε.

1.4.2 Differential privacy for numerical functions
We said that the Laplace noise is suitable for counting

queries, but it turns out it can be added also to any nu-
merical function f : D → R about the dataset we want to
publish. Still, there is a catch: the amount of noise we must
add is linked to the so-called global sensitivity of f :

Definition 3 (global sensitivity of a function).
We define the global sensitivity ∆ (f) of a function f : D →
Rw, w ∈ N+, as

∆ (f) = max
D1, D2 ∈ D
|D1∆D2| = 1

‖f (D1)− f (D2)‖1

A function has low sensitivity if the addition or removal of
one person to any database can only change the outcome
of the function evaluation by a small amount. Notice how
for a single counting function c : D → N the global sensi-
tivity is low (∆(c) = 1) and thus the noise to add is lim-
ited. If instead we apply first a generic function f on a db
D1, and then on a neighboring db D2, if f changes a lot it
means we will need to add more noise to probably obtain
the same output. For this reason in this paper we are going
to describe principally methods that are based on calculat-
ing noisy counts, as they introduce less error in the output.
Generally ε for counting queries is taken to be between 0.1
and 0.5. We can now formalize the procedure described so
far with the so-called Laplace Mechanism:

Definition 4 (Laplace mechanism [20]). Given a
database D ∈ D, and a function f : D → Rw with w ∈ N+

and global sensitivity ∆, an ε-differentially private mecha-
nism L for releasing f is to publish L(D) = f(D) + X,
where X is a vector of random variables each drawn from
a Laplace distribution Lap(∆(f)/ε). Laplacian density is
g (x) = 1

2b
exp (− |z| /b), which is a symmetric distribution

with variance 2b2.

From the definition we can see it is possible to output not
only one but many values (that is, statistics) about a database
provided we add the right amount to noise to them. The
noise is proportional to the global sensitivity ∆(f) of the
vector of values f we are releasing.



1.5 Differential privacy weaknesses

1.5.1 Relaxations
Noise introduced by the randomization can produce re-

sults far from the true ones, thus leading to scarce utility of
the published output for data consumers. Many relaxations
of differential privacy exists to address this problem and the
major one is (ε, δ)-differential privacy:

Definition 5 ((ε, δ)-dp [19]). Given a randomized mech-
anism M : D → R we say M satisfies (ε, δ)-differential pri-
vacy if ∀D1, D2 ∈ D such that |D1∆D2| = 1 and R ⊆ R the
following equation holds:

P (M (D1) ∈ R) 6 eεP (M (D2) ∈ R) + δ

We can see it only differs from the previous definition in
the additional δ factor added to the right hand side of the
equation. The meaning is to allow the release mechanism to
fail providing regular differential privacy with a frequency
given by δ. There are no hard and fast rules for setting ε
and δ. It is generally left to the data releaser, and usually
δ is taken to be very small, δ 6 10−4. (ε, 0)-dp is the
same as ε-dp. Among the other relaxations we mention also
(ε, δ)-probabilistic differential privacy:

Definition 6 ((ε, δ)-pdp [45]). Given a randomized mech-
anism M : D → R and ε > 0, 0 < δ < 1 constants we say
M satisfies (ε, δ)-probabilistic differential privacy if ∀D1 ∈ D
we can divide the output space R into two sets R,R′ ⊆ R
such that

P
(
M (D1) ∈ R′

)
6 δ

and ∀D2 ∈ D such that |D1∆D2| = 1 and ∀R ⊆ R the
following equations hold:

P (M (D1) ∈ R) 6 eεP (M (D2) ∈ R)

This definition guarantees that algorithm M achieves ε-
differential privacy with high probability (1 − δ). The set
R′ contains all outputs that are considered privacy breaches
according to ε-differential privacy; the probability of such an
output is bounded by δ. A mechanism satisfying (ε, δ)-pdp
satisfies also (ε, δ)-dp and is thus stronger, but the converse
does not hold.

1.5.2 Is differential privacy good enough?
Some people say even differential privacy is not enough to

adequately protect individuals from data disclosure. Kifer
and Machanavajjhala in [36] point out that differential pri-
vacy really works only if individuals are truly independent
from each other. When there is no independence the partici-
pation of somebody in the db can be inferred just by looking
at other (supposedly known and in relation with the “vic-
tim”) entries. As a consequence, they claim we are forced to
take into consideration adversarial knowledge, even if differ-
ential privacy apparently freed us from such a burden. In
[10] a classifier is built to prove attacks against differentially
private and l-diverse data (l-diversity [46] is a supposedly ’in-
ferior’, purely syntactical method) releases can have a quite
similar accuracy. From a practical point of view, Dankar
and El Emam [14] address several issues of differential pri-
vacy in the context of health care. They evidence a lack of
real-life deployments of differentially private datasets, which
might cause difficulties in assessing responsibilities if privacy

breaches occur (was the ε value appropriate, who else used
with success such an ε? etc...). It might also be difficult to
explain the level of anonymization guaranteed to patients,
as ε is a parameter of a formula quite theoretical in nature.
Furthermore, since published data is obtained through ran-
domization, sometimes it may look hard to believe - i.e. a
randomized census dataset may indicate there are people
living at the center of a lake. As a consequence, analysts
might be lead to mistrust the approach (or who applied it).
Lee and Clifton in [39] perform a study on how to set the
right ε value to obtain a desired privacy level. In the con-
clusions they claim that any discussion of a differentially
private mechanism requires a discussion of how to set an
appropriate ε for that mechanism, a challenge that may be
as or more difficult than developing the mechanism itself.
Fu et al in [28] also question the utility of the ε since it is
public and it is not that clear how it should be set. As a
solution, Fu proposes the l′-diverted privacy model where ε
parameter is set to 0. To avoid introducing distortions given
by random perturbations, Bhaskar et al in [5] observe suffi-
ciently large databases may already include enough entropy
to induce sufficient uncertainty in the analyst without the
need to add further noise to the results.

1.6 Mechanisms
The two main mechanisms are the already described Laplace

mechanism [20] and the Exponential mechanism [49].
For the analysis whose outputs are not real or make no

sense after adding noise (such as i.e. strings or partition-
ings), McSherry and Talwar propose the Exponential Mech-
anism, defined as:

Definition 7 (exponential mechanism [49]). A mech-
anism M : D → R is said to be exponential if it selects an
output r ∈ R from the output domain by taking into consid-
eration its score of a given utility function q : (D ×R)→ R
in a differentially private manner. The exponential mecha-
nism assigns exponentially greater probabilities of being se-
lected to outputs of higher scores so that the final output
would be close to the optimum with respect to q. The cho-
sen utility function q should be insensitive to changes of any
particular record, that is, have a low sensitivity. Let the sen-
sitivity of q be ∆q = max

∀r,D1, D2

|q (D1, r)− q (D2, r)| for

|D1∆D2| = 1 then the mechanism

M (D, q) =
{

return r with probability ∝ exp
(
ε·q(D,r)

2∆q

)}
gives ε-privacy

This mechanism allows for example to publish the most
frequent eye color of persons in a room. Other mechanisms
are Li et al ’ Matrix mechanism [40], the Geometric mech-
anism (a discretized version of the Laplace mechanism) by
Ghosh et al [29] and Dwork et al’s Gaussian mechanism [19].

2. MEASURING UTILITY
Broadly speaking, the utility of a mechanism is its capabil-

ity to minimize the error, which is a measure of the distance
between original input db/statistics on it and noisy output
db/statistics . As we will explain later in Section 3, only util-
ity of restricted classes of queries can be guaranteed in the
non-interactive setting. Blum, Ligett, and Roth [6] showed
that in such setting it is possible to answer exponentially
sized families of counting queries so in this paper we will



mostly look at solutions for publishing data that are useful
for such queries. However, the choice of suitable statistics
is a difficult problem as these statistics need to mirror the
sufficient statistics of applications that will use the sanitized
database, and for some applications the sufficient statistics
are hard to characterize. Popular approaches to measure
utility are (α, β)-usefulness [6], relative error with correc-
tion for small queries [59, 8] and without correction [11, 60],
absolute error [12, 16, 44], variance of the error[11, 59, 16],
euclidean distance [44, 32]. In the following, we are going to
define them more precisely.

Definition 8 ((α, β)−usefulness[6]). A privacy mech-
anism M is (α, β)-useful for queries in class C if with prob-
ability 1− β, for every Q ∈ C and every dataset D ∈ D, for

D̃=M (D) ,
∣∣∣Q(D̃)−Q (D)

∣∣∣ 6 α

It is adopted in [6],[60] (only for a basic cell based al-
gorithm), and [7]. (α, δ)-usefulness is effective to give an
overall estimation of utility, but according to [9] fails to pro-
vide intuitive experimental results. [9, 8, 59] experimentally
measure the utility of sanitized data for counting queries by
relative error adopting this formula:

Definition 9 (relative error [59]). Let Q be a query
and M : D → R a privacy mechanism. We denote relative

error as rel (Q) =
|Q(D̃)−Q(D)|
max(Q(D),s)

where s is a sanity bound

that mitigates the effects of the queries with excessively small
selectivities. In both [59] and [9] s is set to 0.1% of |D|.

When the database is considered as a vector of reals (so
h = 1, A1 = R) the euclidean distance can be used as util-
ity. Li et al in [44] measure the error as the euclidean
distance between original and noisy database Err (D) =
‖D −M (D)‖2, claiming their mechanism is capable in such
a way to guarantee the utility for any class of queries. Hardt
et al [32] measure the euclidean distance between query re-
sponses.

3. THEORETICAL BOUNDS
Many theoretical results show the existing relations be-

tween the parameter ε or eventually δ for (ε, δ)-dp and the
quality of the released database. First analysis about dif-
ferential privacy [17, 24, 21] proved strong negative results
about the amount of information that could be published
with reasonable accuracy. In particular, Dinur et al [17]
showed that, in order to avoid database reconstruction (bla-
tant non-privacy), the minimum amount of noise to be added
to subset sum queries answers of a database made of a bit

per user is of magnitude Ω
(√
|D|
)
. This fact lead initially

many researchers to concentrate on scenarios in which the
number of queries that can be answered by a statistical
database system is limited, such as in the interactive setting.
This restriction allowed only answering a sublinear number
of queries in the size of database |D|. By using notions from
learning theory, Blum, Ligett and Roth proved the possi-
bility of non-interactive data release satisfying differential
privacy for queries with polynomial VC-dimension, such as
predicate queries. By carefully selecting a class of concepts
C with functions c : U → {0, 1} as elements, it is possible to
privately answer counting queries with noise that grows only
logarithmically with the number of queries asked (or more

generally with the VC-dimension of the query class). Utility
is guaranteed by the (α, β)-usefulness criteria, which tell us
that with high probability 1− β all errors are bound by α.
Dwork in [23] provides a non-interactive mechanism which
extends to arbitrary low-sensitivity queries rather than only
counting queries. The extension makes crucial use of the re-
laxation to (ε, δ)-privacy as motivated by De in [15], in which
relations between ε-dp and (ε, δ)-dp are discussed. Although
Dwork et al [20] prove any function with low sensitivity can
be computed privately, De shows that answering arbitrary
low-sensitivity queries requires more noise than answering
counting queries.

4. METHODS
With differential privacy as soon as we look at the data we

must ask ourselves if we are leaking information. Analysis
of the disclosure amount represented by parameter ε can be
difficult, but fortunately several mechanism properties can
be used to analyze and construct algorithms. Among them,
we find:

Theorem 1 (sequential composition [48]). Let M1

preserves ε1-dp and M2 preserves ε2-dp.
Then M (D) = (M1 (D) ,M2 (D)) preserves ε1 + ε2-dp

Theorem 2 ( parallel composition [48]). Let M1 pre-
serves ε1-dp and M2 preserves ε2-dp.
Then M (D) = (M1 (D1) ,M2 (D2)) preserves max (ε1, ε2)-
dp

Theorem 3 (post-processing [48]). If M : D → R
preserves ε-dp and f : R → R′ is any arbitrary (database
independent) function, then f (M) : D → R′ preserves ε-dp.

We can observe sampling is an inherent source of random-
ness so we can treat its use as a mechanism:

Theorem 4 (sampling[11]). Given a mechanism M which
provides ε-differential privacy, and 0 < p < 1, including each
element of the input into a sample S with probability p and
outputting M(S) is 2peε-differentially private

These properties permit to split the privacy budget ε and
to optimally assign parts of it to various mechanism tasks.
Also, since in some cases the randomization might produce
contradictory results, accuracy can be augmented by fixing
the conflicting data after the randomization algorithm has
produced its output. To perform this operation usually only
the result of a differentially private mechanism is used with-
out accessing again the database, so for the post-processing
property no further ε privacy budget must be spent. We will
talk more about consistency checks in Section 4.3.

Several methods have been proposed to address the issue
of releasing differentially private data. Broadly speaking,
they can be divided in the categories of histogram construc-
tion, sampling and filtering, partitioning, dimensionality re-
duction. In the following, we are going to review them.
The notation Õ indicates complexity with hidden logarith-
mic factors.

4.1 Computing histograms
A histogram is a disjoint partition of the database points

with the number of points which fall into each partition. In
Figure 8 we can see an example of a simple database, made



Figure 8: A noisy histogram release.

by only two attributes, Height and Age. The actual data
we are going to publish is represented by the noisy counts of
each cell. If an analyst wants to know how many people are
present under the dashed rectangle he may then just sum the
single noisy counts of the cells contained in the query region.
Publishing a noisy version of the histogram is appealing be-
cause of its usefulness for counting queries, which constitute
the basis of many data mining tasks. However, the quality of
queries executed on the histogram may be low. As we have
already seen in Section 1.4, the amount of Laplace noise to
add to a single cell count is modest and thus acceptable. On
the other hand, if a query requires the sum of n histogram
cell counts, since each of them has some noise the total noise
sums up n times and can quickly become intolerable. This
is explained by the fact the total variance of the error also
sums up. There are ways to limit the variance, though.

4.1.1 Exploiting linear combinations
Suppose we have four cells having respectively counts c1,

c2, c3, c4 and some analyst is interested in the total count
of them c(T ) =

∑4
i=1 ci. If we publish the vector of 4 single

noisy counts c̃ = c + l, where l is a vector of four samples
drawn from the Laplace distribution, each published noisy
count will have variance V . The analyst will than have to
sum each of the noisy values for a total variance of 4V .
But, knowing the analyst is interested in the sum, we could
also provide him with the noisy sum: c̃(T4) =

∑4
i=1 ci + l,

with l being only one single value this time. This would
have just variance V , albeit in this case we would have to
pay an extra ε budget because, for the sequential composi-
tion property (Theorem 1), we are publishing twice informa-
tion about the same individuals. The interesting fact about
this procedure is that the analyst, having counts of over-
lapping regions, could further exploit this knowledge to get
better approximations of unpublished counts. Suppose he
also wanted to know the total count c(T3) of c1, c2 and c3:
he could add the three single noisy counts, but then the er-
ror variance would be 3V . A better alternative is given by
performing a subtraction of the noisy count of c4 from the
total noisy count: c̃(T3) = c̃(T4)− c̃4. For the properties of
variance, we would have to sum (by subtraction) only two
published noisy counts thus having a variance of 2V . More
generally, we can calculate the counting queries we desire
as linear combinations of other noisy counting queries to
minimize error variance. These linear combinations can be
conveniently stored as coefficients in matrices, and for this
reason these principles were adopted in the so-called Matrix
Mechanism by Li et al [40]. The knowledge of the query
workload that analysts desire from the dataset is exploited
to obtain a different set of noisy queries, called the strat-
egy, from which the answer to the workload can be then

computed without accessing again the database. Knowing
the workload beforehand is important because a differen-
tially private release cannot maximize utility for all type of
queries, so restricting the query space helps calibrating at
best the coefficients to assign to each cell. Although the
process helps to significantly reduce the error variance, the
computational cost to calculate the optimal strategy matrix
given a generic query workload is polynomial in |U|. Any
dataset with several attributes Ai leads to huge contingency
matrices of size |U| = Πi |Ai|, making Li’s method quickly
inapplicable. To solve the issue of finding the optimal strat-
egy matrix and improve the Matrix Mechanism it is possible
to exploit dependencies in the query workload as done by
Li in [41] (considering the (ε, δ)-dp relaxation), Yuan [41],
and Cormode [13]. While Li’s and Yuan’s works use a fixed
privacy budget ε to obtain each noisy count, Cormode [13]
adopts a non-uniform scheme. Intuitively, it doesn’t make
sense to add the same amount of noise to a single cell and to
a whole group of cells. Counts of big areas are less likely to
be significantly distorted by error, so we can afford to assign
a smaller ε budget to their noisy count. Conversely, since
single cells can have small values, the magnitude of which
we would like to preserve, it is worth to spend more bud-
get to reduce their error variance. Unfortunately, Cormode
points out that finding the strategy, the optimal budget al-
location and a way to obtain the desired answers from the
published queries given the query workload is computation-
ally very expensive, so two of the three former parameters
must be fixed beforehand to obtain results in an acceptable
time. In particular, Cormode focuses on workloads of k-way
marginals, demonstrating how, given a strategy, it is pos-
sible to lower the error by calculating an optimal privacy
budget distribution and consistent results in time substan-
tially linear in |U| while guaranteeing formal error bounds.
We note how all the methods discussed so far are indepen-
dent of the dataset, and only consider the query workload as
input. Once the strategy (and eventually the budget alloca-
tion) has been calculated, it can be used with any instance
of the database and the anonymization can be performed in
time O(|U|) by just adding Laplace noise according to the
parameters previously discovered.

4.1.2 Adopting fixed strategies
It is also possible to adopt a fixed strategy and assume it

will provide sufficient utility for most workloads of interest,
although we already know this is not theoretically possible.
Anyway, even adopting a fixed strategy matrix will not spare
us the burden to add noise to |U| cells, which can still be
prohibitive for certain datasets. Among the other works suf-
fering in general from |U| size we find [22, 16, 59, 60, 2, 33].
Xiao in [59] operates a transform on the counts and adds
noise in the wavelet domain in time O(|U| + |D|). Similar
techniques via post-processing with overlapping information
are suggested by Hay in [33]. In both cases the best utility
is obtained for range queries, where attributes values are or-
dered and sums of contiguous cells are requested by the ana-
lyst.

4.2 Sampling and filtering
One possible solution to the histogram problem is to take

advantage of sparsity of data present in many databases.
This condition occurs when the number of cells

∣∣U+
∣∣ with



Figure 9: Data sparsity put in evidence.

Figure 10: Noisy sample of cells.

positive count in the contingency table in the database at
hand is much bigger than zero-valued entries. To prove
this fact Cormode et al in [12] define sparsity ρ as ρ =∣∣U+

∣∣ /Πi |Ai|. Table 2 is an example of the fact many nat-
ural datasets have low density in the single-digit percentage
range, or less. Applying differential privacy naively gener-
ates output which is 1/ρ times larger than the data size.
In the examples table, 1/ρ ranges from tens to thousands.
which is clearly not practical for today’s large data sizes.
Among the methods which exploit data sparsity we find [12,
44, 7]. In [7] this definition of m-sparse queries is proposed:

Definition 10 (m-sparse query [7]). We say that a
linear query Q is m-sparse if it takes non-zero values on only
m universe elements, and that a class of queries is m-sparse
if each query it contains is m′-sparse for some m′ 6 m.

For the sampling and filtering category the idea is to avoid
publishing huge contingency tables by filtering out entries
with small counts, which are often in significant quantity in
many databases. Looking at the database example in Figure

Dataset Density ρ
OnTheMap [58] 3-5%
Census Income [51] 0.4-4%
UCI Adult Data [37] 0.14%

Table 2: Real-life datasets with their sparsity value

Figure 11: Simple partitioning with associated spa-
tial index and privacy cost.

9, ideally we would like to publish only noisy counts of the
three occupied cells. But just publishing those three counts
would inform adversaries the other cells are empty. This
would violate differential privacy, which requires to protect
the privacy even of people outside the database. If we filter
the noisy counts, probably counts of empty cells are going
to be low and filtered out. Because of randomness in the fi-
nal release we might still find some empty cell with the noisy
count big enough to pass the filter (we can see an example in
Figure 10 supposing the threshold is set to 1.0). Cormode et
al [12] adopt a variety of filtering techniques - highpass filter-
ing and priority sampling being the most useful - to override
the costly operation of materializing a complete noisy con-
tingency table. Their method is suited for sparse datasets
and provides minimum error variance for subset sum queries.
If s is the desired number of cells to publish the expected
running time is O(s+ |U+|). Chen et al [8] consider the pub-
lication of trajectories of individuals. Each trajectory step
can be done in a universe of locations L for a maximum of 10
steps to still guarantee privacy. Chen’s method counts the
frequencies of occurrence of each trajectory in the database
by building a prefix tree. Each node in the tree represents a
location and the noisy frequency with which the path from
the root to the node can be found in the database. For differ-
ential privacy constraints, fake nodes must be added to the
tree to represent non-existing trajectories, but to limit their
number a filtering method similar to Cormode’s is adopted.
A further consistency checking pass at the end is performed
to minimize error variance, and the algorithm complexity is
O(|D|·|L|). For search log analysis Korolova in [38] and Gotz
in [30] propose a mechanism to release noisy aggregated user
query and clicked url counts by filtering out excessively small
counts. However, such approach breaks the association be-
tween distinct query-url pairs in the output since all the
user-IDs are removed, which might be useful in only a few
applications. Therefore, in [34] a sampling method is pro-
posed to allow analysis in exactly the same fashion and for
the same purpose as the original data. However, (ε, δ)-pdp
is adopted to provide formal guarantees because relaxations
are indispensable in search log publishing as proven in [30].

4.3 Partitioning
Partitioning is indicated for ordered attributes such as

spatial data. Like in algorithms computing histograms, the
universe U is divided into regions but in this case the shape
of the cells or their number is not fixed and an attempt is
made to find an optimal subdivision of the space. Regions



Figure 12: A more complex partitioning with asso-
ciated spatial index and privacy cost.

Figure 13: A quad-tree partitioning.

may be overlapping and for each found region a noisy count
of the people inside is taken. For these reasons partitioning
can be seen as the construction of a spatial index, an ex-
ample of which can be seen in Figure 11. To each node in
the index there is associated a corresponding region, a noisy
count of individuals in the region and also an ε privacy bud-
get to calibrate the noise. In this example we chose to assign
a greater budget to deeper levels in the tree, meaning their
counts will be more precise. Only the index with its noisy
counts and region shapes is published. The goal is to opti-
mize the results of range queries, where the analyst asks for
the number of people lying under a given query area, usually

Figure 14: A possible range query over a partition-
ing.

expressed as an hyperrectangle. This calculation involves
the sum of already published noisy counts so a strategy to
allow the user to minimize the total noise variance must also
be provided. In Figure 14 a possible strategy suggested by
Cormode in [11] is proposed, where counts corresponding to
the greatest regions completely enclosed by the query area
are taken and summed. Some regions on the borders of the
query will be only partially covered. In this case only the
fraction of their noisy count corresponding to the part actu-
ally under the query might be taken into the sum.

4.3.1 Privacy cost of partitioning
Here we report some properties partitionings can have:

Definition 11 (Regular decomposition). The under-
lying partitioning scheme is fixed, so lines’ position is not
determined by the data in the db. An example of this is the
quad-tree partitioning as in Figure 13, where space is recur-
sively subdivided into four regions until the desired level of
granularity is reached.

Definition 12 (Containment). Each node region fully
contains the regions of its descendant.

Definition 13 (Disjointness). For every node all of
its children regions must be disjoint.

Theorem 5 (Nested counts). Assuming the partition-
ing satisfies containment and disjointness properties and a
privacy budget v.ε is assigned to each node v, then for the
composition properties of differential privacy the privacy cost
of releasing the index is the maximum of the sum of the node
budgets along any possible path from the root to the leaves.
Since each path corresponds to a subset of users disjoint from
the other paths, for the disjointness property of differential
privacy (Theorem 2) only the maximum privacy cost among
all paths is taken.

We can now derive the total privacy cost of the example
of Figure 11. Since the count of region A will also include
the counts of region B and of region C, for the composition
property of differential privacy (Theorem 1) this triple inter-
section will cost a total privacy budget of ε(M1) = ε0+ε1+ε2.
What would be the cost if we took counts of other regions, as
mechanism M2 does in Figure 12? According to Theorem 5,
the privacy budget would be exactly the same. In this par-
titioning case, there could be consistency anomalies in the
noisy counts. In particular, the sum of the noisy counts of
regions B1, B2, B3, B4 might not be equal to the noisy count
of the root region A. To solve this issue techniques can be
adopted to make the counts consistent while keeping error
variance low.

4.3.2 Approaches to partitioning
A popular approach to partitioning is with kd-trees: at

each round, an attribute is chosen and points in the database
are split in 2 disjoint sets according to some criteria. Usually
uniformity in the number of points on both sides of the split-
ting line is considered by choosing the median. Noisy counts
of the two newly founded partitions are then published and
partitioning is done recursively. Because of noise, the sum of
noisy counts of subpartitions may not be equal to the parti-
tion containing them. To solve this issue, consistency checks
can then be applied to the counts to make them appear con-
sistent. The idea of differentially private data-partitioning



index structures is suggested in the context of private record
matching in [35]. The approach there is based on using an
approximate mean as a surrogate for median (on numerical
data) to build kd-trees. The approach of Xiao et al [60]
imposes a fixed resolution grid over the base data. It then
builds a kd-tree based on noisy counts in the grid, splitting
nodes which are not considered ‘uniform’, and then pop-
ulates the final leaves with ‘fresh’ noisy estimated counts.
Quad-tree partitioning simply imposes a recursive fixed grid
in which at each round the space is divided into four rectan-
gular cells of the same size. See Figure 13 for an example. In
[11] by Cormode et al, a comparison between several median
finding methods, Hilbert R-trees and quadtrees partitioning
is performed and privacy budget is allocated in a geometri-
cally increasing way to counts during the partitioning of 2D
data. An ordinary least squares (OLS) estimator is devised
to achieve consistency and minimum error variance in time
linear in the size of the published tree. Quad-tree partition-
ing is found to be fast and superior in quality of the output
to all the other tested methods.

4.4 Dimensionality reduction
Dimensionality reduction methods usually consider the

database as a matrix and apply random projections on it.
In this line of research we find [7], in which for the class of
linear counting queries that are m-sparse a method based
on releasing a perturbed random projection of the private
database together with the projection matrix is described.
Running time is polynomial in the database size |D|, m, and
log |U|. In [63] compression is applied to obtain a reduced
synthetic database D′ of size |D′| � |D| in polynomial time.
Li et al [44] apply compressive sensing to obtain a perturbed
database from sparse data through decompression in time
Õ (|D|). Li et al in [43] for set-valued data obtain a set of
frequent itemsets called basis for which any frequent itemset
is a subset of some basis.

5. APPLICATIONS
In recent years differential privacy has been successfully

applied to a wide range of real-world data, although gener-
ally with no quality assessment by final users of anonymized
datasets. In [45] (ε, δ)-pdp is introduced to model spatial
data. This solution is then compared by Cormode with
his work in [12]. Xiao et al in [60] apply a kd-tree tech-
nique on CENSUS data [51], and results are found supe-
rior to Inan’s et al hierarchical tree method [35]. More-
over, the open source HIDE platform [61] is provided to
experiment with four differentially private algorithms: [33,
35, 59, 9]. Cormode later in [11] found his algorithm to
give less error than Inan’s [35] and Xiao’s works [60]. In
[9] MSNBC [50] and STM [54] datasets represented as set-
valued boolean data are considered. The only comparison is
performed for MSNBC against basic noisy datacube method
of Dwork’s[20], as STM has big universe |U| size and few
methods are capable to handle this situation. A succes-
sive paper of Li et al [43] for set-valued data is applied
to Retail Dataset of an anonymous Belgian retail store [4],
the Mushroom Dataset [4], AOL Search log [1], Pumsb star
from PUMS (Public Use Microdata Sample) [4] and Kosarak
Dataset [4], where each transaction is the clickstream of a
user of a Hungarian website. Li notes that the method of
Chen [9] applied to these datasets would generate either an
empty synthetic dataset or a dataset which is highly inaccu-

rate. In his opinion, Chen’s method would provide reason-
able performance only when the number of items is small.
We note this statement contrasts with Chen’s results about
the STM dataset, which has a fairly large universe size. The
STM dataset represented as sequences of locations is also
considered again by Chen in [8], although location coordi-
nates nor time intervals are taken into account. In [30] pub-
lication of counting queries for search logs is considered, but
dataset origin is not specified. In [34] AOL search log [3] is
adopted for experimental tests. [59] performs experiments
on CENSUS data [51] using binning to have |U| ≈16,000,000.

6. SYNTHETIC DATABASES
There have been few attempts to devise mechanisms of

the kind M : D → D, because privacy in these cases is
more difficult to preserve. Outputs can be either a synthetic
database - in which individuals follow the same distribution
as in the original database - or just a perturbed version,
where rows are directly taken from the original database
with some modification to guarantee anonymity. Perturbed
database release is considered in [9, 8, 44]. Synthetic data
is released with methods proposed in [63, 45, 34]. Gupta
et al in [31] considers the release of a complete relational
database with many tables for performance testing purposes.
Anonymization of single tables is performed with the Matrix
Mechanism to take into account possible query workloads.

7. CONCLUSIONS
Differential privacy provides formal guarantees that pub-

lic opinion needs when privacy is at stake, yet for many years
such requirements were judged by researchers too strict to be
applicable. Recently, several breakthrough results changed
this mood. We presented a variety of methods - partition-
ing, dimensionality reduction, sampling and filtering - which
have been successfully applied to many real-life datasets.
Some methods were also shown for histogram publishing,
which, albeit unfeasible on certain databases with big uni-
verse size, can still be used in practice on some real life
datasets. Most of the papers we discussed about use a plain
ε-dp model which seems to indicate relaxations may not re-
ally be needed except in problematic cases like search log
publishing. Differential privacy can be applied efficiently
with formal guarantees to set-valued data [43, 9], sparse
data for subset sum counting queries [12], sequences of short
length [8], bidimensional spatial data [11] and for general
purpose queries [44]. When data is not sparse and |U| is not
too big Xiao’s wavelet method [59] can be used with suc-
cess. If the query workload is known with correlated queries
further improvements can be given by Yuan’s method [62]
albeit at a greater computational cost. When the workload
is made of k-way marginals Cormode’s [13] permits to reach
low error with consistent results in time substantially linear
in |U|, while guaranteeing formal error bounds. For the dif-
ficult case of search log publishing Hong et al [34] showed it
is even possible to publish a perturbed database while max-
imizing utility. For these reasons time is ripe for the Open
Data movement to start considering the adoption of differ-
ential privacy and provide people with adequate guarantees
about the way their data is handled. Research has still to
be done to impose constraints on output data in order to
avoid inconsistencies and to properly anonymize highly di-
mensional non-sparse data and preserving utility of general



classes of queries. In this regard, publication of synthetic
or perturbed datasets seems a promising approach, which
needs careful query utility examination.
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